If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+8t+183=0
a = -16; b = 8; c = +183;
Δ = b2-4ac
Δ = 82-4·(-16)·183
Δ = 11776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11776}=\sqrt{256*46}=\sqrt{256}*\sqrt{46}=16\sqrt{46}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16\sqrt{46}}{2*-16}=\frac{-8-16\sqrt{46}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16\sqrt{46}}{2*-16}=\frac{-8+16\sqrt{46}}{-32} $
| 8-t+4=3(t+5)-7 | | 20x+2x*50=25200 | | 4-(8-2x)=3(x+2) | | 12=4(-16x-3) | | 3x-6=5x-2(x+2)-2 | | 20/24(2x+2)=6/24x+3 | | 8x+3x-25=3(x-5)-10 | | x+0.05x=1100 | | 4x-3(2+x)=2-x | | x-2(3+x)=1-x | | -2x+x-30=3x+6 | | 9x+x-10=4x+8 | | 4+2x=3*x(-7 | | 6.3=−0.6x | | -4(m+2)+6m=10+m | | h+5=11-2h | | 5u+30-6u=2u | | -4=12/3x | | 3·(x-5)=3x-15 | | 4x+8+(-8)=-6+(-8) | | 0.069=x-(0.65*(x^2)) | | 3×2y=24 | | -7+3z=14 | | 4x+8+(-8)=-60+(-8) | | -40=-12/3x | | 5y+2=425y+2=42 | | 7x+2x=3+18 | | 2x+358=x+842 | | -15n+18=-57 | | -15n+18=-5 | | 10x+13x+26=x | | 5e-1=23 |